首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15015篇
  免费   1793篇
  国内免费   675篇
电工技术   319篇
综合类   1517篇
化学工业   5085篇
金属工艺   440篇
机械仪表   1465篇
建筑科学   2106篇
矿业工程   202篇
能源动力   541篇
轻工业   1578篇
水利工程   213篇
石油天然气   378篇
武器工业   127篇
无线电   523篇
一般工业技术   2173篇
冶金工业   197篇
原子能技术   158篇
自动化技术   461篇
  2024年   45篇
  2023年   296篇
  2022年   461篇
  2021年   726篇
  2020年   631篇
  2019年   528篇
  2018年   519篇
  2017年   577篇
  2016年   736篇
  2015年   734篇
  2014年   918篇
  2013年   1014篇
  2012年   1072篇
  2011年   1113篇
  2010年   808篇
  2009年   882篇
  2008年   752篇
  2007年   920篇
  2006年   788篇
  2005年   738篇
  2004年   529篇
  2003年   486篇
  2002年   372篇
  2001年   339篇
  2000年   264篇
  1999年   216篇
  1998年   174篇
  1997年   175篇
  1996年   122篇
  1995年   110篇
  1994年   67篇
  1993年   53篇
  1992年   59篇
  1991年   47篇
  1990年   33篇
  1989年   29篇
  1988年   23篇
  1987年   22篇
  1986年   15篇
  1985年   23篇
  1984年   11篇
  1983年   17篇
  1982年   16篇
  1981年   2篇
  1980年   7篇
  1979年   5篇
  1977年   3篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
《Ceramics International》2020,46(12):19942-19951
1D TiO2 nanotube arrays (TNTs), as versatile nanostructures, have attracted a considerable amount of scientific attention, particularly in photocatalytic applications. In the present study, UV radiation-assisted anodization method with various irradiation times (30–120 min) was employed as a preferable approach to fabricating TNTs with remarkable optical property and photocatalytic activity. The results revealed that in situ irradiation not only improved the surface area (from 30.10 to 48.5 m2), but also increased the roughness factor (from 77.27 to 124.73). Furthermore, UV radiation had a significant impact on optical property and by altering elemental composition, led to a red shift in absorption edge (from 3.2 to 1.4eV). Meanwhile, voltammetric experiments showed that 120 min UV radiation during anodization was able to substantially cause a surge of the photocurrent density and the photoconversion efficiency of TNTs from 0.15 to 0.55 mA cm−2 and from 13% to 40%, respectively. As a consequence of the improvement in optical property and photochemical features, anodic TNTs fabricated under 120 min UV radiation could increase the photocatalytic degradation of 2,4-DCP from 75% to 100%. Moreover, the kinetics study showed that all photocatalytic reactions followed zero-order kinetics which rate constant over the synthesized TNTs under 120 min UV radiation was about 5.1 times greater than that of conventionally fabricated TNTs. Likewise, the pathway of photocatalytic degradation and the proportion of reactive species in this process were assessed by scavenging tests. The results confirmed that holes (h+) play the main role that 53% of photocatalytic degradation occurred via both direct and indirect reactions with h+ species. The rest of the degradation pathways were also allocated to e and O2 species by accounting for 37% and 10%, respectively.  相似文献   
12.
The main objective of the present work is to improve the performance of bonded joints in carbon fiber composite structures through introducing Multi-Walled Carbon Nanotubes (MWCNTs) into Epocast 50-A1/946 epoxy, which was primarily developed for joining and repairing of composite aircraft structures. Results from tension characterizations of structural adhesive joints (SAJs) with different scarf angles (5–45°) showed improvement up to 40% compared to neat epoxy (NE)–SAJs. Special attention was considered to investigate the performance of SAJs with 5° scarf angle under different environments. The tensile strength and stiffness of both NE-SAJs and MWCNT/E-SAJs were dramatically decreased at elevated temperature. Water absorption showed a marginal drop of about 2.0% in the tensile strength of the moist SAJs compared to the dry one. Cracks initiation and propagation were detected effectively using instrumented-SAJs with eight strain gauges. The experimental results agree well with the predicted using three-dimensional finite element analysis model.  相似文献   
13.
二氧化钛凭借优异的光催化性能,越来越受到人们的广泛关注和重视。以钛酸四丁酯为原料,利用水解-水热-干燥/煅烧工艺制备得到未掺杂TiO2光催化剂和掺钒TiO2光催化剂,利用其对甲基橙溶液的降解率做了比较分析。结果表明,以钛酸四丁酯为原料,采用溶胶-凝胶法制备钒掺杂TiO2光催化剂是可行的。制备V/TiO2产品的最佳工艺条件:钒钛质量比为6∶100、水热温度为160 ℃、水热时间为12 h,120 ℃下干燥14 h。紫外光照射条件下,甲基橙光催化降解效率达到99.10%,降解时间小于45 min。  相似文献   
14.
Surface oxidation and ensuing damage substantially decrease the service life of High Temperature Polymer Matrix Composite (HTPMC) structures. Oxidative degradation behavior of composites is strongly dependent on the coupling between chemical and mechanical responses of the material. In a composite lamina, the onset of damage and subsequent coupled acceleration of both damage and oxidation are controlled by the transverse failure strength of the oxidized regions. The direct measurement of this strength from experimentation is challenging and cumbersome. A model-based methodology for estimating the mean transverse failure strength of the oxidized regions of a unidirectional composite is described in this paper. As the strength of the oxidized region is expected to show a high-degree of spatial variability, the estimated mean is shown to be relatively insensitive to the effect of strength variance. The developed methodology is illustrated with isothermal aging data available for a typical high-temperature composite system.  相似文献   
15.
We explore a truncation error criterion to steer adaptive step length refinement and coarsening in incremental-iterative path following procedures, applied to problems in large-deformation structural mechanics. Elaborating on ideas proposed by Bergan and collaborators in the 1970s, we first describe an easily computable scalar stiffness parameter whose sign and rate of change provide reliable information on the local behavior and complexity of the equilibrium path. We then derive a simple scaling law that adaptively adjusts the length of the next step based on the rate of change of the stiffness parameter at previous points on the path. We show that this scaling is equivalent to keeping a local truncation error constant in each step. We demonstrate with numerical examples that our adaptive method follows a path with a significantly reduced number of points compared to an analysis with uniform step length of the same fidelity level. A comparison with Abaqus illustrates that the truncation error criterion effectively concentrates points around the smallest-scale features of the path, which is generally not possible with automatic incrementation solely based on local convergence properties.  相似文献   
16.
We use photoluminescence to observe light-induced degradation in silicon in real time. Numerical simulations are used to match our results and lifetime decay data from the literature with theoretical models for the generation of the light-induced boron–oxygen defects. It is found that the existing model of the slowly generated defect SRC, where its saturated concentration is a function of the majority carrier concentration, does not explain certain results in both p- and n-type samples. A new model is proposed in which the saturated SRC concentration is controlled by the total hole concentration under illumination.  相似文献   
17.
18.
Neat poly (lactic acid) (PLA) and PLA/cassava bagasse (CB) composites were used to produce seedling tubes by extrusion and injection molding. The tubes were buried in simulated soil, and their biodegradation was investigated by weight loss, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). After 180 days, the composites' biodegradation was higher than neat PLA material, and the higher the CB content, the higher the biodegradation, which caused fissures and voids in the material. The biodegradation of PLA/CB composites increased the phosphorus content in the soil after 180 days. Composites of PLA with CB, an abundant agro-industrial residue in Brazil, are promising because they can reduce the environmental impact due to CB's proper destination, and the composites' costs and biodegradation are faster than pure PLA material. Both the faster biodegradation of the tube and the higher P content are advantageous for seedling tubes.  相似文献   
19.
Application of brown titanium dioxide (TiO2-x) and its modified composite forms in the photocatalytic decomposition of organic pollutants in the environment is a promising way to provide solutions for environmental redemption. Herein, we report the synthesis of effective and stable TiO2-x nanoparticles with g-C3N4, RGO, and multiwalled carbon nanotubes (CNTs) using a simple hydrothermal method. Among all the as-synthesized samples, excellent photocatalytic degradation activity was observed for RGO-TiO2-x nanocomposite with high rate constants of 0.075 min?1, 0.083 min?1 and 0.093 min?1 for methylene blue, rhodamine-B, and rosebengal dyes under UV–Visible light irradiation, respectively. The altered bandgap (1.8 eV) and the large surface area of RGO-TiO2-x nanocomposite impacts on both absorption of visible light and efficiency of photogenerated charge electron (e?)/hole (h+) pair separation. This resulted in enhanced photocatalytic property of carbon-based TiO2-x nanocomposites. A systematic study on the influence of different carbon nanostructures on the photocatalytic activity of brown TiO2-x is carried out.  相似文献   
20.
Lithium-sulfur batteries (LSBs) are considered a promising next-generation energy storage device owing to their high theoretical energy density. However, their overall performance is limited by several critical issues such as lithium polysulfide (PS) shuttles, low sulfur utilization, and unstable Li metal anodes. Despite recent huge progress, the electrolyte/sulfur ratio (E/S) used is usually very high (≥20 µL mg−1), which greatly reduces the practical energy density of devices. To push forward LSBs from the lab to the industry, considerable attention is devoted to reducing E/S while ensuring the electrochemical performance. To date, however, few reviews have comprehensively elucidated the possible strategies to achieve that purpose. In this review, recent advances in low E/S cathodes and anodes based on the issues resulting from low E/S and the corresponding solutions are summarized. These will be beneficial for a systematic understanding of the rational design ideas and research trends of low E/S LSBs. In particular, three strategies are proposed for cathodes: preventing PS formation/aggregation to avoid inadequate dissolution, designing multifunctional macroporous networks to address incomplete infiltration, and utilizing an imprison strategy to relieve the adsorption dependence on specific surface area. Finally, the challenges and future prospects for low E/S LSBs are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号